Introduction

Ten years from today online learning will be taken for granted, an afterthought, and so ubiquitous that discussions will revolve around how best to access the learning you want and not where to find the resources you need. In the United States, online learning is becoming pervasive, but not yet an unquestioned part of the fabric. There are still debates on the benefits of online learning as massive open online courses (MOOC) spread throughout higher education and discussions continue about how best to incorporate online learning into existing education models. The value of online learning for children is being questioned while Kahn Academy and YouTube are becoming the Wikipedia and Google for the K-12 crowd. As the Ontario Online Learning Portal explains, "all learners today are online learners to some degree" (2013). So what can we expect in 2023? At a high level, the next steps will include learning analytics (LA) and personal learning environments (PLE). At a more granular level, the emerging technologies for the next decade will be learning management systems (LMS) connected if not directed by learning analytics, synchronous communication tools for both verbal communication and group collaboration and videos that support sharing and showing.

Education's Three Future Technology Vehicles

Education in general can be broken down into two distinct components, teaching and learning. Each has many unique challenges, but both have the goal of moving students from their initial understanding of a topic or position to a different and hopefully deeper understanding of that topic or position and its connectors. Thus, the difference between learning analytics and personal learning environments is the same as that of education; learning analytics support teaching by identifying individual needs for instructors while personal learning environments are student-driven and provide ways for students to make sense of information that they are taking in and attempting to process. Online education has the same goals, but in this arena, technologies play a crucial role because they provide the vehicles to move students and their knowledge and understanding from point A to point B. Under this umbrella, the emerging technologies offer a foundation for the next decade of online education.

Figure 1. 10 Year Online Education Diagram with Technology Scaffolding and Foundation Supports

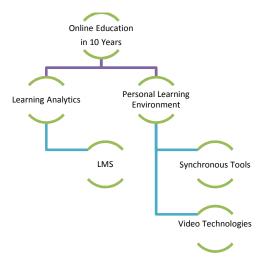


Figure 1. Schematic of the author's expectation for the technological foundation that will support online education in 2023. Learning analytics and personal learning environments represent the bridge connectors that will facilitate the relationship between online education in 10 years and LMS applications, synchronous tools and video technologies.

Learning Analytics and Learning Management Systems

Analytics is a model that takes large chunks of data and evaluates that data for use. Learning analytics focuses on using the data gathered from the analytics model to analyze student activity and suggest outcomes with respect to "grades, retention, or completion" to name a few areas of concern for teachers and schools (Educause, 2011). However, LA is not limited to these areas of concern. LA also supports improving the experiences of learners and their learning environments (Siemens, Gasevic, Haythornthwaite, et. al. 2011).

In the U.S. Department of Education, Office of Educational Technology issue brief, a distinction is made between data mining, specifically educational data mining and LA. However, when reviewing the example questions in Table 1, it is evident that all of the questions support a student-centered focus with successful learning outcomes as the overall goal.

Table 1

List of questions taken directly from a U.S. Department of Education Issue Brief on Educational Data Mining and Learning Analytics

Data mining questions:	Learning analytics questions:				
 What sequence of topics is most effective for a specific student? What student actions are associated with more learning (e.g., higher course grades)? What student actions indicate satisfaction, engagement, learning progress, etc.? What features of an online learning environment lead to better learning? What will predict student success? 	 When are students ready to move on to the next topic? When are students falling behind in a course? When is a student at risk for not completing a course? What grade is a student likely to get without intervention? What is the best next course for a given student? Should a student be referred to a counselor for help? 				

(Bienkowski, Feng, & Means, 2012, pp.12 and 14).

This is where learning management systems come in. LMS applications track students, their frequent or infrequent access, time in the system and in the many areas of the system, coursework viewing and completion, clicks (how many times a test is taken or material reviewed) and progress. LA can then collect the data captured in the LMS and use that data to predict student issues and success, course problems and benefits, and instructor weaknesses and strengths. As we move toward a learner-focused environment, being able to gather information that supports learners and their learning experiences will be one of the trends for the next decade. LA and LMS are therefore, two pieces of a complex pie that have the potential to yield suggestions for next steps in teaching and learning and that type of information will become more and more important as educational institutions seek to differentiate themselves in the marketplace.

Synchronous Tools and Video Technologies in Personal Learning Environments

Personal Learning Environments are the next evolution in online learning and a definite player in the education arena in the next decade. Currently, there is a distinction between traditional and non-traditional learners, but as Siemens & Tittenberger (2009) captured in a quote,

"We call students over twenty-five who are working full-time non-traditional students because when they first entered education research and policy discussions, they differed from the traditional undergraduate student. Today, these 'non-traditional' students are the majority of the student population in higher education. More than sixty percent of students enrolled are now over twenty- five and more than sixty percent of students are now working full-time while pursuing their education. We should start using a new term to describe these students" (p. 24).

As we move from the traditional to the non-traditional student and continue through the next ten years, the self-directed learner (SDL) will become the new normal. This self-directed learner is struggling right now with an abundance of tools, but little in the way of instruction on how to incorporate those tools (Valjataga & Laanpere, 2010).

The PLE is at the beginning of a journey that will move both students and their methods for creating understanding into the next decade. Synchronous tools and video technologies are only two of the numerous Web 2.0 tools that have the potential to facilitate learning in PLEs. The GoTo collection of products (GoToMeeting, GoToWebinar, & GoToTraining) and the WebEx product suite are two examples of popular synchronous tools that facilitate connection, collaboration and instant communication with the option to record and share with others asynchronously for review or for anyone unable to attend synchronous sessions. Video technologies such as YouTube, Screencastomatic, Pixorial, Camtasia and Captivate provide different ways to capture and save video content that can be shared in public venues or kept private for use by specific groups or individuals. Each of these have the potential to contribute to a student's PLE. For example, the ASTD (American Society for Training & Development) records synchronous meetings and provides text transcripts and PowerPoint slides at the conclusion of the meetings. Links to completed Google Hangouts are another way to have a discussion with people who are in different places and capture that information for future use.

RSS feeds, wikis, blogs, and the ability to tag items of interest with various social bookmarking tools are just a few of the Web 2.0 tools that can be a part of personal learning environments. Personal Learning Environments are certainly more than video technologies and synchronous meetings but, synchronous tools and video technologies are the instruments for the next decade because they facilitate and support connection. Many students in online learning courses bemoan the loss of connection. These tools facilitate real-time, face-to-face interaction, collaboration and opportunities for engagement which continues to be a key driver of successful online courses (Bart, 2011).

Benefits, Disadvantages and Challenges

From a framework perspective, it is the proposal of this author that the next decade will see learning analytics software pulling data from personal learning environments to better serve student populations. These same personal learning environments will be connected to learning management systems that make use of Web 2.0 tools with the goal of connecting and interacting using synchronous and video technologies. Future student SDL (or self-directed learner) will log into an open network learning environment (ONLE) where he or she can build their PLE (Tu, Sujo-Montes, Yen, et al. 2012). As SDL builds the learning environment, she/he runs into a question that they cannot find an answer to even after checking their social bookmarking sites and putting a request out on a Twitter-like microblog. SDL then requests a synchronous demonstration from their instructor with a request to record for later review. After confirming with their instructor, SDL gets a message from a peer who volunteers to "show" them how they approached the problem by creating a video and posting the video on a limited access YouTube type channel so that SDL can then post a link to the video in their PLE. This is a high-level overview of the benefits of LA, PLE, LMS applications, synchronous tools and video technologies. Additional details follow.

Figure 2. Nesting of Key Components of the 2023 Online Education Environment

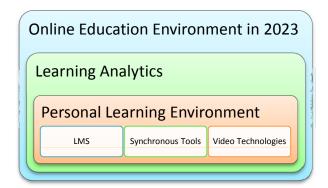


Figure 2. This is a nested drawing of the important role that learning analytics will play in all areas of online education in 2023. The drawing shows that online education is the main canvas with learning analytics holding PLEs, LMS, synchronous tools and video technologies. LMS, synchronous tools and video technologies are inside the PLE canvas where they will interact together and as a part of PLEs.

Benefits

The benefits of LMS, synchronous tools and video technologies going forward will be integration. The idea of integrating LMS applications with Web 2.0 technologies has already begun and is referenced in a 2009 article about emerging technologies (Godwin-Jones, 2009). In addition, the article talks about iGoogle and the canvas view that supports full-page displays of certain widgets which is similar to the idea of an ONLE where a foundation is created, but students are able to customize based on their learning habits (Godwin-Jones, 2009).

Disadvantages

The same article that talks about LMS and Web 2.0 integration also points to the inherent problems in the top-down approach that current LMS applications continue to maintain (Godwin-Jones, 2009). PLEs, synchronous tools and video technologies are collaboration focused while LMS applications are management focused. The critical connection between LMS applications, PLEs, synchronous tools and video technologies is integration and at this time, not all applications or technologies work well together. In other words, there is not an agreed upon standard language for all tools and technologies. Some tools will work with iPhones, but not Android phones. Some technologies can effectively integrate with some LMS applications, but not all. Some LMS applications allow integration, some do not and some allow minimal integration with a limited number of technologies or vendors.

Challenges

The challenges going forward will be evaluating next steps specifically with respect to learning analytics. As Yuan (2012) explains

However, a number of unanswered questions, concerns, and hesitations suggest that there is a need to move analytics forward with caution and reflection. It is agreed that education is a complicated system and cannot really be run as business. Similarly, learning is a complex social activity and all technologies, regardless of how

innovative or advanced they may be, remain unable to capture the full scope and nuanced nature of learning (p.6).

Learning curves, carefully evaluating the results of LA so that assumptions are not detrimental to the learning process, PLEs that are pedagogically scaffolded and tools and technologies that are intuitive are just a few of the fundamental challenges facing this next decade of learning change. At this time, the learning curves can be steep and the potential for the misapplication of LA data is high, synchronous technologies are limited by Internet connections that may be slow or intermittent and video technologies can be misused without solid pedagogical footings.

Table 2

A listing of the Advantages and Challenges with LMS Applications, Synchronous Tools and Video Technologies

	Management	Accessibility	Privacy	Ease of Use	Support	Cost
LMS	The advantage of	LMS applications	LMS application	LMS systems are	Both paid for	LMS systems can
	LMS applications is	are typically top-	support privacy	typically user-	and free LMS	be cost
	that they were	down and	and were not	friendly for	applications	prohibitive
	created to manage	require	created to	instructors and	come with	especially for
	student and	passwords for	support global	challenging for	support. From	smaller
	course data and	access. In	sharing of	administrators.	an industry	institutions. Free
	are therefore a	addition, access	information as	Ease of use is	perspective,	and open source
	positive for	is typically not	evidenced by the	not a primary	there is a leaning	LMS systems
	management. The	global so an	use of password	benefit, but	toward online	may not be as
	challenge is that	administrator	access. At this	instead more of	videos for	robust, but the
	there may be a	could have more	time, privacy is a	a challenge	additional	functionality is
	steep learning	access than an	benefit because	because even	instruction and	typically better
	curve when	instructor.	educational	with open	troubleshooting.	than attempting
	learning to	Accessibility is	institutions will	source LMS		to manage and
	manage the	possible, but not	need to	systems, there		track student
	different pieces of	guaranteed.	negotiate what	will be a need to		progress using
	an LMS.		is shared and	learn how to		spreadsheets or
			with whom by	manage, track		simple
			both teachers	and gather the		documents.
			and students.	kind of data that		
				each instructor		
				needs to access.		
Synchronous	Synchronous tools	Synchronous	Synchronous	The advantage	Synchronous	Synchronous
Tools	that have costs	tools are highly	tools offer a	of synchronous	tools provide	tools can be
	involved are	accessible and	level of privacy	tools is that they	support in the	costly, but based
	usually easier to	pride themselves	and the ability to	must be user-	form of online	on personal
	manage because	on being user-	record and share	friendly to	video tutorials	experience over
	the expectation is	friendly. There is	via private links.	survive the	and paid	the past decade,
	that the	an	They also	marketplace.	synchronous	costs for use
	environment	understanding in	provide the	The challenge	tools offer	have gone down.
	should be limited	the industry that	ability to	for synchronous	customer	The challenge
	to those invited.	anything that	password	tools is that end	support lines.	will be with
	Free tools also	takes up too	protect the	users may not be	There are no	webinars and
	provide the	much of your	information. The	aware of the	apparent	training sessions
	opportunity to	time will result	ASTD uses	wealth of	challenges with	that allow more
	limit access, but	in customers	member logons	functionality	support for	than 100 people
	not necessarily to	finding a	and the	available with	these tools.	to participate. As
	limit the fact that	different	requirement for	the different		the number of
	the event is	avenue. The	registration to	tools.		participants go

	occurring, e.g.	potential	view recorded			up, so does the
	Google Hangouts.	challenge with	synchronous			cost to connect
	Coopie Hangouts.	synchronous	meetings. The			those
		tools is the fact	challenge to			participants.
		that they run on	privacy is			participants.
		networks that	ensuring that			
		may not have	end users			
		the bandwidth				
			understand how			
		to optimally	to protect their			
		support the	information and			
		interactive	the synchronous			
		activities.	tool owner doing			
			the work to			
			ensure that their			
			software is			
			secure.			
Video	Video technologies	Video	Video	Video	Support for	The cost for
Technologies	do not lend	technologies are	technologies	technologies	video	many video
	themselves to	highly accessible.	have the	lend themselves	technologies is	technologies is
	management. In	There are many	potential to live	to one-click	not surprisingly	usually
	order to manage	free versions in	on a student's	functionality	provided in the	reasonable and
	video	use by everyday	computer and	with the option	form of video	in many cases
	technologies,	people and	not be shared,	to edit and add	clips focused on	free. Those
	organizations will	education	but once shared	functionality.	particular tasks.	video
	need to have	versions that	(even with	This, of course,	The benefit to	technologies
	identified	may have costs	privacy settings	will depend	this is that much	that do cost
	guidelines in place.	associated. In a	turned on), what	upon whether or	of the training is	have to offer a
	Otherwise, as has	recent	is posted on the	not the end user	easily accessible.	lot of additional
	been observed by	certification	World Wide	is working with a	The challenge is	functionality to
	many with various	program, it was	Web can always	free, limited	if an end user	motivate end
	YouTube videos	determined that	potentially be	video technology	has a	users to
	that have	videos were	accessed.	or a paid-for	complicated	purchase their
	embarrassed both	highly useful	Hackers and	function friendly	question that is	product so those
	celebrities and	because some	protection from	technology.	not identified in	technologies
			•	tecinology.		_
	everyday people,	students were	hackers is a key		the free online	tend to be pretty
	video technologies	deaf and being	concern when		videos typically	robust. There
	are too easy to use	able to sign on a	considering the		available.	are no real cost
	so management	video and	privacy of video			negatives for
	must be proactive	provide captions	technologies.			video
	and regularly	for hearing				technologies
	communicate	students bridged				because of the
	video boundaries.	а				need to offer
		communication				exceptional
		gap for group				functionality if
		projects.				there are costs

Conclusion

It is this author's belief that learning analytics will drive the next decade. Analytics are being used in the healthcare industry, the business sector and now the educational arena. Online education has the potential to benefit greatly from learning analytics because educational institutions need a way to manage and track their online learners and LMS applications already provide a lot of student data. The future of integrated Learning Management Systems will make managing, tracking and data gathering an easier proposition because these applications are moving in the direction of

social media integration which will provide a deeper view into the habits and actions of students. LMS applications that integrate and provide their students the freedom to create their own canvas and by default create understanding in their own PLE further set a foundation that encourages connectedness. This connectedness then fosters the use the synchronous tools and video technologies.

Thus the 2023 emerging technologies remain personal learning environments, synchronous tools and video technologies. Steve Wozniak, co-founder of Apple, explains that because videoconferencing has become the norm and reading manuals pushed aside in favor of viewing online videos that provide easy to follow step-by-step instructions, the future will be about how "collaborative and video technologies in the classroom are allowing students to receive individualized attention and learn at their own pace while being actually engaged" (Wozniak, 2013). In the online education arena, collaborative and video technologies will not be a nice-to-have, but a must. Therefore, as LA help us navigate this next decade and PLEs provide a vehicle for student curation of content, synchronous tools and video technologies will be the transportation method that keeps students, instructors and even content connected.

References

- Bart, M. (2011, June). How to make your online students feel connected. *Faculty Focus*. Retrieved from http://www.facultyfocus.com/articles/online-education/how-to-make-your-online-students-feel-connected/
- Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief (Issue brief ED-04-CO-0040). Retrieved from http://www.cra.org/ccc/docs/learning-analytics-ed.pdf
- Educause Learning Initiative. (2011). 7 Things You Should Know About First-Generation Learning Analytics. Retrieved from http://net.educause.edu/ir/library/pdf/ELI7079.pdf
- Godwin-Jones, R. (2009). Emerging technologies personal learning environments. *Language Learning & Technology*, 13(2), pp. 3 9. Retrieved from http://llt.msu.edu/vol13num2/emerging.pdf
- Siemens, G., Gasevic, D., Haythornthwaite, C., Dawson, S., Shum, S., Ferguson, R., Duval, E., Verbert, K., & Baker, R. (2011). Open learning analytics: an integrated & modularized platform. Retrieved from SoLAR Society for Learning Analytics Research website: http://solaresearch.org/OpenLearningAnalytics.pdf
- Siemens, G. & Tittenberger, P. (2009). *Handbook of Emerging Technologies for Learning*. Winnepeg: University of Manitoba. Retrieved from http://elearnspace.org/Articles/HETL.pdf
- Ontario Online Learning Portal for Faculty and Instructors. (2013). 5 Ways Online Learning is Enabling Change in Post-Secondary Education. Retrieved from http://www.contactnorth.ca/trends-directions/evolving-pedagogy
- Tu, C., Sujo-Montes, L., Yen, C., Chan, J., & Blocher, M. (2012). The Integration of Personal Learning Environments & Open Network Learning Environments. *Techtrends: Linking Research and Practice To Improve Learning*, *56*(3), 13-19.
- Valjataga, T., & Laanpere, M. (2010). Learner Control and Personal Learning Environment: A Challenge for Instructional Design. *Interactive Learning Environments*, 18(3), 277-291.
- Wozniak, S. (2013). What if a computer could be a teacher? Retrieved from http://allthingsd.com/20130426/what-if-a-computer-could-be-a-teacher/
- Yuan, L. (2012). Will analytics transform education? A critical view on the data we gather about the learners. Retrieved from http://www.learningfrontiers.eu/?q=story/will-analytics-transform-education